一、生物处理过程
水解酸化阶段:污水首先进入设备的水解酸化池,在水解和发酵细菌的作用下,复杂的大分子、不溶性有机物被分解为小分子、溶解性有机物,将难以生物降解的物质转化为易于生物降解的物质,为后续的好氧处理创造条件。同时,在此过程中,部分有机物被转化为二氧化碳和水,实现初步的去除效果。
好氧处理阶段:经过水解酸化后的污水进入好氧池,好氧池中存在大量的好氧微生物,如细菌、真菌、原生动物等,它们以污水中的有机污染物为营养源,在有氧的条件下进行新陈代谢,将有机污染物分解为二氧化碳和水等无害物质,从而实现对污水中有机物的进一步去除。此外,微生物还能通过同化作用将部分有机污染物转化为自身的细胞物质,实现微生物的增殖。
二、膜分离过程
固液分离:好氧处理后的混合液进入膜组件,膜组件具有特定的孔径,能够有效地截留活性污泥、微生物絮体以及未被完全分解的大分子有机物等固体物质,使处理后的水能够透过膜孔进入膜的另一侧,实现固液的高效分离。这种分离效果远远优于传统的二沉池,能够确保出水水质清澈,悬浮物和浊度极低。
过滤与浓缩:膜分离过程不仅实现了固液分离,还对活性污泥起到了浓缩的作用。被截留的活性污泥在膜表面形成一层动态的污泥层,随着过滤的进行,污泥层中的污泥浓度逐渐升高,这有利于提高生物处理系统的污泥浓度,进而增强系统对有机污染物的处理能力。同时,通过膜的过滤作用,能够进一步去除污水中的细菌、病毒等微生物,使出水水质更加安全可靠。
跨膜压力驱动:膜分离过程是在一定的跨膜压力作用下实现的。通过在膜组件的两侧形成压力差,使得混合液中的水能够在压力的驱动下透过膜孔,而固体物质则被截留在膜的进料侧。通常采用真空泵或自吸泵等设备来提供所需的跨膜压力,保证膜分离过程的持续稳定运行。
多介质过滤器的运行控制方式(保障流程自动化、稳定化)多介质过滤器的运行控制分为 “手动控制” 和 “自动控制”,核心是实现 “过滤 - 反洗 - 正洗” 的自动切换:手动控制:小型设备或简易
多介质过滤器的运行参数需要核对哪些内容:参数名称定义与作用常规范围(适配工况)注意事项设计流量(Q)设备额定处理水量,决定能否匹配系统需求常规 0.5~500 m³/h(按设备尺寸 / 过滤面积设计)
多介质过滤器的运行是 “过滤 - 反洗 - 正洗” 的闭环,其中过滤阶段是核心工作环节,反洗和正洗是保障滤料性能的 “再生环节”,具体流程如下:1. 第一阶段:过滤(工作阶段,核心净化过程)
多介质过滤器的性能特点围绕「净化效果、运行稳定性、适配场景、运维成本」四大核心,结合其分层滤料设计和循环再生机制,形成了 “高效、稳定、灵活、经济” 的核心优势,具体如下:核心性能优势(核心竞争力)<
多介质过滤器凭借「高效截污、稳定可靠、适配性强、运维经济」的核心优势,成为水处理系统的 “预处理核心单元”,广泛应用于市政供水、工业生产、饮用水净化、废水处理、特种行业等多个领域,核心作用是去除原水中